Characteristics of rabbit ClC-2 current expressed in Xenopus oocytes and its contribution to volume regulation.
نویسندگان
چکیده
In the Xenopus oocyte heterologous expression system, the electrophysiological characteristics of rabbit ClC-2 current and its contribution to volume regulation were examined. Expressed currents on oocytes were recorded with a two-electrode voltage-clamp technique. Oocyte volume was assessed by taking pictures of oocytes with a magnification of ×40. Rabbit ClC-2 currents exhibited inward rectification and had a halide anion permeability sequence of Cl- ≥ Br- ≫ I- ≥ F-. ClC-2 currents were inhibited by 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB), diphenylamine-2-carboxylic acid (DPC), and anthracene-9-carboxylic acid (9-AC), with a potency order of NPPB > DPC = 9-AC, but were resistant to stilbene disulfonates. These characteristics are similar to those of rat ClC-2, suggesting rabbit ClC-2 as a counterpart of rat ClC-2. During a 30-min perfusion with hyposmolar solution, current amplitude at -160 mV and oocyte diameter were compared among three groups: oocytes injected with distilled water, oocytes injected with ClC-2 cRNA, and oocytes injected with ClC-2ΔNT cRNA (an open channel mutant with NH2-terminal truncation). Maximum inward current was largest in ClC-2ΔNT-injected oocytes (-5.9 ± 0.4 μA), followed by ClC-2-injected oocytes (-4.3 ± 0.6 μA), and smallest in water-injected oocytes (-0.2 ± 0.2 μA), whereas the order of increase in oocyte diameter was as follows: water-injected oocytes (9.0 ± 0.2%) > ClC-2-injected oocytes (5.3 ± 0.5%) > ClC-2ΔNT-injected oocytes (1.1 ± 0.2%). The findings that oocyte swelling was smallest in oocytes with the largest expressed currents suggest that ClC-2 currents expressed in Xenopusoocytes appear to act for volume regulation when exposed to a hyposmolar environment.
منابع مشابه
Regulation of CFTR chloride channel trafficking by Nedd4-2: role of SGK1
Introduction: The cystic fibrosis transmembrane conductance regulator (CFTR) chloride (Cl−) channel is an essential component of epithelial Cl− transport systems in many organs. CFTR is mainly expressed in the lung and other tissues, such as testis, duodenum, trachea and kidney. The ubiquitin ligase neural precursor cells expressed developmentally down-regulated protein 4-2 (Nedd4-2...
متن کاملLocalization and functional characterization of rat kidney-specific chloride channel, ClC-K1.
To investigate the physiological role of a kidney-specific chloride channel (ClC-K1), we sought to determine its exact localization by immunohistochemistry and its functional regulation using Xenopus oocyte expression system. The antiserum specifically recognized a 70-kD protein in SDS-PAGE of membrane protein from rat inner medulla and an in vitro translated ClC-K1 protein. Immunohistochemistr...
متن کاملO-10: A Marked Animal-Vegetal Polarity in The Localization of Na+,K+-ATPase Activity and Its Down-Regulation Following Progesterone-Induced Maturation
Background: Polarized cells are key to the process of differentiation. Xenopus oocyte is a polarized cell that has complete blue-print to differentiate 3 germ layers following fertilization, as key determinant molecules (Proteins and RNAs) are asymmetrically localized. The objective of this work was to localize Na+, K+-ATPase activity along animal-vegetal axis of polarized Xenopus oocyte and fo...
متن کاملDownregulation of ClC-2 by JAK2.
JAK2 (Janus kinase-2) is activated by cell shrinkage and may thus participate in cell volume regulation. Cell volume regulatory ion channels include the small conductance Cl(-) channels ClC-2. The present study thus explored whether JAK2 influences ClC-2 activity. To this end, ClC-2 was expressed in Xenopus oocytes with or without wild type JAK2, active (V617F)JAK2 or inactive (K882E)JAK2 and t...
متن کاملThe S362A mutation block ROMK2 (Kir1.1b) endocytosis in Xenopus laevis oocyte membrane .
Abstract The S362A mutation block ROMK2 (Kir1.1b) endocytosis in Xenopus laevis oocyte membrane . Saeed Hajihashemi1 , 1-Assistant professor, PhD in Physiology, Department of Physiology, School of Medical science, Arak University of Medical Sciences. Introduction: ROMK channel is localized on the apical membrane of the nephron. Recent studies suggest that endocytosis of ROMK chan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 274 2 شماره
صفحات -
تاریخ انتشار 1998